Robotics Exploration HSTCH 130

UNIT NAME	LESSONS	LEARNING TARGETS/ OBJECTIVES	Resources (Suggested Activities)	ASSESSMENT	CROSS CURRICULUM CONNECTIONS
Team Freeze Tag	Introduction	In this Lesson, students will learn how to add and use a Bumper Switch with their BaseBot. Students will also learn how to print to the Brain's screen, and configure their Controller using VEXcode EXP. Then, students will apply these skills to compete in the Freeze Tag Challenge, where they will play a game of one-on-one Freeze Tag.	Introduction VEX Education Lesson BaseBot Build Instructions Building the BaseBot Video Teacher Portal Unit Materials Unit Facilitation Guide	Unit assessment will be done through the results competition, debrief conversation and engineering notebook	Engineering Math Science
	Driving with the EXP Controller	In this Lesson, students will learn how to drive the BaseBot using the Controller and the predetermined driver configurations on the Brain. Then, students will apply these skills to compete in the Drive a Figure	<u>Driving with the</u> <u>EXP Controller</u> <u>Lesson</u>	Same as above	Engineering Math Science

	Fight challongs, where they will			
	Eight challenge, where they will			
	navigate around two EXP Buckyballs.			
	In this Lesson, students will learn			
	how to change the wheels on the			
	BaseBot and test its performance			
	with different wheel combinations			
	to improve their speed in the Figure			Engineering
Changing the	Eight Wheel challenge. This	Changing the	Same as above	<mark>Math</mark>
Wheels	challenge will seem familiar since it	Wheels Lesson		<mark>Science</mark>
	was also used in Lesson 2, but			
	students will be optimizing your			
	robot by altering the wheel			
	combinations to improve their			
	driving.			
	In this Lesson, students will learn			
	how to add and use a Bumper			
	Switch with their BaseBot. Students			
Adding the	will also learn how to print to the	Adding the Bumper		Engineering
Bumper Switch	Brain's screen, and configure their	Switch and Printing	C	Math
and Printing to	Controller using VEXcode EXP. Then,	to the Brain Lesson	Same as above	<mark>Science</mark>
the Brain	students will apply these skills to			
	compete in the Freeze Tag			
	Challenge, where they will play a			
	game of one-on-one Freeze Tag.			
	Now it is time to compete in the			
Team Freeze	Team Freeze Tag Competition!	Team Freeze Tag		Engineering
Тад	Apply all the things students have	<u>Competition</u>	Same as above	<mark>Math</mark>
Competition	previously learned to the Team	<u>Lesson</u>		<mark>Science</mark>
	Freeze Tag Competition.			
	- ·			
Conclusion	Now that you have completed all of		Unit assessment will	Engineering Math
	the challenge activities and the		be done through	wath

		Team Freeze Tag Competition, it is time to look back on what you have learned in this Unit, share that learning with your class, and see how these skills have connections in various career paths.	<u>Conclusion</u> <u>Lesson</u>	the results competition, debrief conversation and engineering notebook <u>Debrief</u> <u>Conversation Rubric</u> <u>Engineering</u> <u>Notebook Rubric</u> <u>Other Grading</u> <u>Rubics</u>	Science
Robot Soccer	Introduction	In this Unit, you will explore how to create a manipulator on your robot to grab, pass, and score the most goals as a robot soccer player in the Robot Soccer competition! Visit the Teacher's Portal for teacher support materials and videos about the content and facilitation of the Robot Soccer Lessons. In this Unit, you will learn how to play Robot Soccer with your Clawbot! Robot Soccer is played in matches of two robots versus two robots. Your team will need to move a Buckyball through your opponent's goal to score! During this Unit, you	Lesson Introduction Teachers Portal Unit Materials Clawbot Build Instructions Unit Facilitation Guide	Unit assessment will be done through the results competition, debrief conversation and engineering notebook	<mark>Engineering</mark> Math Science

	will learn about various manipulators that can help your team to score more goals. Watch the animation below to see an example of Robot Soccer game play in action!			
Manipulators	In this Lesson, you will learn about what a manipulator is, the difference between passive and active manipulators, and how to design an effective manipulator to make your robot accomplish a task. You will learn about intake manipulators, and how to code an intake in a project for your robot. You will also learn about how to assign a Drivetrain to your Controller's joysticks, and using motor groups, so that you can prepare to optimize your robot for playing Robot Soccer. You will apply this information to design and build a manipulator for your robot to compete in the One-on-One Robot Soccer Challenge.	Manipulators Lesson Manipulator Summary Intake Design Summary Motor Groups Summary Assigning Joysticks to Motors Summary	Same as above	Engineering Math Science
Robot Soccer Competition	Now it is time to compete in the Robot Soccer competition! In this two-on-two driver control competition, your robot will play on a team with a second robot. Together, you will try to score as	Robot Soccer Competition Lesson Engineering Design Prcess Poster	Same as above	Engineering Math Science

	the Buckyball into the opposing team's goal. Each match is 60 seconds of playing time, and the timer will stop after each goal to reset the robots and Buckyball on the Field. The team with the most goals at the end of the match wins! Watch the video below to learn the process you can use to apply all the things you have previously learned to the Robot Soccer competition.		Unit assessment will be done through	
Concl	Now that you have completed all of the challenge activities and the Robot Soccer competition, it is time to look back on what you have learned in this Unit, share that learning with your class, and see how these skills have connections in various career paths.	<u>Conclusion Lesson</u>	the results competition, debrief conversation and engineering notebook <u>Debrief</u> <u>Conversation Rubric</u> <u>Engineering</u> <u>Notebook Rubric</u> <u>Other Grading</u> <u>Rubics</u>	<mark>Engineering</mark> Math <mark>Science</mark>

Up and Over	Introduction	In this Unit, you will learn how to play in the Up and Over competition with your Clawbot. You will iterate on the Clawbot build and game strategy to improve the robot's performance and score more points!	Up and Over Lesson Introduction Check Batteries and Pair Controller Clawbot Build Instructions	Unit assessment will be done through the results competition, debrief conversation and engineering notebook	Engineering Math Science
	Claw Design	In this Lesson you will learn about what a claw is, and how to design an effective claw to accomplish a particular task. You will also learn about the concept of scouting, and how you can take inspiration from other robots to inform your design decisions. Then, you will apply your learning to collect Buckyballs with your Clawbot in the Grab and Go Challenge.	<u>Clawbot Design</u> <u>Lesson</u> <u>Up and Over</u> <u>Practice</u> <u>Grab and Go</u> <u>Activity</u>	Same as above	Engineering Math Science
	Arm Designs	In this Lesson you will learn about what robotic arms are, how they work, and what makes an effective arm design. Then, you will apply your learning to stack as many Buckyballs onto rings as you can within a minute in the Stacked Up challenge.	Arm Design Lesson Different Arm Designs and Practice Stacked Up Competition	Same as above	Engineering Math Science
	Motor Groups	In this Lesson you will learn about motor groups, why you should use them, and how to configure motor groups in VEXcode EXP. You will also	<u>Motor Groups</u> <u>Lesson</u>	Same as above	Engineering Math Science

		learn about how to choose a driver	Over the Barrier		
		for your team in a fair and respectful	<u>Activity</u>		
		way. Then, you will apply your	Lin and Over		
		learning to compete in the Up and	Up and Over		
		Over Challenge, to drive your robot	<u>Challenge</u>		
		to lift and move Buckyballs up and			
		over a barrier to the other side of			
		the Field!			
		Now it is time to compete in the Up			
		and Over competition! In this one-			
		on-one, driver control competition,			
		your robot will try to score as many			
		points as possible in your scoring			
		zone, by moving colored Buckyballs			Engineering
	Up and Over	up and over the barrier on the Field.	Up and Over Competition and <u>Reflection</u>	Same as above	Math
	Competition	The robot with the most points in			<mark>Science</mark>
		their scoring zone at the end of the			
		60-second match wins! Watch the			
		video below to learn the process you			
		can use to apply all the things you			
		have previously learned to the Up			
		and Over competition.			
		· · · · ·		Unit assessment will	
		Now that you have completed all of		be done through	
		the challenge activities and the Up		the results	
	Conclusion	and Over competition, it is time to		competition,	Engineering
		look back on what you have learned	Conclusion Lesson	debrief	Math
		in this Unit, share that learning with		conversation and	<mark>Science</mark>
		your class, and see how these skills		engineering	
		have connections in various career		notebook	
		paths.		ΠΟΙΕΒΟΟΚ	

				<u>Debrief</u> <u>Conversation Rubric</u> <u>Engineering</u> <u>Notebook Rubric</u> <u>Other Grading</u> <u>Rubics</u>	
Ring Leader	Introduction	his Unit, you will learn how to play the Ring Leader Competition with your Clawbot. You will iterate on your code and game strategy to improve the robot's performance in both driver control and autonomous challenges to score more points! Watch the animation below to see an example of the Ring Leader Competition.	Introduction Lesson	Unit assessment will be done through the results competition, debrief conversation and engineering notebook	Engineering Math Science
	Driver Control	In this Lesson you will learn how to use the Driver Control program on the EXP Brain to move the Clawbot, and practice driving with different driver control configurations. Then, you will apply your learning to pick up and score two rings in the Speed and Score Challenge.	<u>Driver Control</u> <u>Lesson</u> <u>Ring Leader</u> <u>Practice</u> <u>Speed and Score</u> <u>Challenge</u>	Same as above	Engineering Math Science
	Coding for Autonomous Movements	In this Lesson you will learn about coding your robot to complete autonomous movements and how to succeed in an autonomous	<u>Path Planning</u> <u>Lesson</u>	Same as above	Engineering Math <mark>Science</mark>

	challenge. Then, you will apply your	Coding Crunch		
	learning by creating a VEXcode EXP	<u>Challenge</u>		
	project to pick up and place two			
	rings on the small post in the Coding			
	Crunch Challenge.			
	In this Lesson, you will learn about			
	customizing driver controls, and the			
	differences between strategizing for			Engineering
	driver control and autonomous	Customizing Driver		Math
Using Multiple	movement. You will look at how you	Control Lesson		Science
Programs	can use the Controller and VEXcode	<u>CONTROL LESSON</u>	Course on all ours	
(Autonomous &	EXP to optimize your competition	Calit Desision	Same as above	Engineering
Driver)	strategy for the Split Decision	Split Decision		Math Science
	challenge. You will also learn how to	<u>Challenge</u>		<mark>Science</mark>
	save multiple programs on your EXP			
	Brain to switch between different			
	programs quickly and easily.			
	Now it is time to compete in the			
	Ring Leader Competition! Ring			
	Leader is played in two 1-minute			
	trial runs. One run is autonomous,	Distant sectors		
	and the other is driver control. Score	Ring Leader		Engineering
Ring Leader	the most points by collecting rings	<u>Competition</u>		Math
Competition	and placing them on posts on the		Same as above	Science
	Field. Watch the video below to	Wrap Up		
	learn the process you can use to	Reflection		
	apply all the things you have			
	previously learned to the Ring			
	Leader Competition.			
	Now that you have completed all of		Unit assessment will	Engineering
Conclusion	the challenge activities and the Ring	Conclusion Lesson	be done through	Math
Conclusion	Leader competition, it is time to look		the results	Science
				Science

		back on what you have learned in this Unit, share that learning with your class, and see how these skills have connections in various career paths.		competition, debrief conversation and engineering notebook	
				<u>Debrief</u> <u>Conversation Rubric</u> <u>Engineering</u> Notebook Rubric	
				<u>Other Grading</u> <u>Rubics</u>	
Castle Crasher	Introduction	In this Unit, you will learn how to play Castle Crasher with your BaseBot! Castle Crasher is a timed trial competition, where your robot will move autonomously to push all Buckyballs off of the Field in the fastest time. You will learn ways to make your code more efficient throughout the Unit. Watch the animation below to see an example of how a robot could autonomously move during a successful run in the Castle Crasher competition.	<u>Introduction</u> Lesson	Unit assessment will be done through the results competition, debrief conversation and engineering notebook	<mark>Engineering</mark> Math Science
	Castle Crasher No Sensors	In this Lesson you will learn how to plan a path and code your robot to drive and turn. Then, you will apply this information to push Buckyballs	<u>Coding the</u> <u>Drivetrain Lesson</u>	Same as above	Engineering Math Science

	off of the Field in the Buckyball Blitz	Buckyball Blitz		
	Challenge.	Challenge		
	In this Lesson you will learn about			
	the Distance Sensor, and how data			
	from the Distance Sensor can be	Add a Distance		
	used in a project to detect objects.	Sensor Lesson		
	You will also learn about the [Wait			Engineering
Castle Cr	asher + until] block, and how that can be	[Wait Until] Block	Same as above	<mark>Math</mark>
Distance	Sensor used in a VEXcode EXP project to	Lesson	Same as above	<mark>Science</mark>
	have your robot make a decision.			
	Then, you will apply your learning to	Sense and Sweep		
	detect and move Buckyballs with	<u>Challenge</u>		
	your BaseBot in the Sense and			
	Sweep Challenge.			
	In this Lesson, you will learn about			
	the Optical Sensor, and how you can			
	use sensor feedback to optimize	Optical Sensor		Engineering
Creat	your strategy and your code for	Lesson		Math
Algorit	I playing Castle Crasher You will also		Same as above	Science
Algori	learn how to create an algorithm to	Sweep the Field		Science
	code your robot to autonomously	<u>Challenge</u>		
	find Buckyballs and complete the			
	Sweep the Field challenge.			
	Now it is time to compete in the			
	Castle Crasher competition! In this			Engineering
Castle C	autonomous competition, your	Castle Crasher		Math
Compe	robot will try to score as many	Competition	Same as above	Science
Compe	points as possible by crashing			Selettee
	'castles' and knocking the Buckyballs			
	off the Field. Each Buckyball that is			

	Conclusion	cleared during the match is worth one point, and the robot with the most points, wins! Code your robot to seek out, crash, and clear castles – but watch out, you don't want to fall off the Field! Now that you have completed all of the challenge activities and the Castle Crasher competition, it is time to look back on what you have learned in this Unit, share that learning with your class, and see how these skills have connections in various career paths.	Conclusion Lesson	Unit assessment will be done through the results competition, debrief conversation and engineering notebook <u>Debrief</u> <u>Conversation Rubric</u> Engineering	Engineering Math Science
				<u>Notebook Rubric</u> Other Grading <u>Rubics</u>	
Treasure Hunt	Introduction	In this Unit, you will learn how to play Treasure Hunt with your Clawbot! Treasure Hunt is a timed trial competition, where your robot will move autonomously to collect red Treasure Buckyballs on the Field in the fastest time. Your robot will need to check each Buckyball along	Introduction Lesson	Unit assessment will be done through the results competition, debrief conversation and engineering notebook	Engineering Math Science

	the Field as part of its run, and you will learn ways to make your code more efficient throughout the Unit.			
Claw No Sensor	In this Lesson you will learn about how to code your robot to drive and use the claw autonomously, and how path planning can help you accomplish this task more easily. Then, you will apply this information to collect Buckyballs with your Clawbot the fastest in the Collector Challenge.	<u>Coding the</u> <u>Drivetrain Lesson</u> <u>Collector Challenge</u>	Same as above	Engineering Math Science
Claw With Sensor	In this Lesson you will learn about the Optical Sensor, and how it can be used with [If then] and [Repeat] blocks in a project to make your Clawbot collect a Buckyball based on its color. Then you will apply what you have learned to compete in the Treasure Mover Challenge, where your robot will need to collect only the red Treasure Buckyball.	<u>Optical Sensor</u> <u>Lesson</u> <u>Treasure Mover</u> <u>Challenge</u>	Same as above	Engineering Math Science
Treasure Hunt Competition	Now it is time to compete in the Treasure Hunt competition! In this timed trial competition, your robot will need to check the Buckyballs on the Field, collect both red Treasure Buckyballs, and deliver them to the Treasure Chest in the fastest time.	Treasure Hunt Competition Competition Reflection Lesson	Same as above	Engineering Math Science

	Conclusion	Now that you have completed all of the challenge activities and the Treasure Hunt competition, it is time to look back on what you have learned in this Unit, share that learning with your class, and see how these skills have connections in various career paths.	<u>Conclusion Lesson</u>	Unit assessment will be done through the results competition, debrief conversation and engineering notebook <u>Debrief</u> <u>Conversation Rubric</u> <u>Engineering</u> <u>Notebook Rubric</u> <u>Other Grading</u> <u>Rubics</u>	Engineering Math Science
Platform Placer	Introduction	In this Unit, you will learn how to play Platform Placer with your Clawbot! Platform Placer is played using driver control, and is a cooperative game. Two robots will work together to place Buckyballs and rings on low, medium, and high platforms to achieve the highest possible score. Teams will learn to design manipulators and lifts, and combine this with driver skills to develop a winning strategy for the competition.	<u>Introduction</u> Lesson	Unit assessment will be done through the results competition, debrief conversation and engineering notebook	Engineering Math Science

Manipulating Various Objects	In this Lesson you will learn about the difference between passive and active manipulators, and how to design an effective manipulator to make your robot accomplish a particular task. Then, you will apply this information to score rings and Buckyballs in the Push and Place Challenge.	<u>Manipulators</u> <u>Lesson</u> <u>Push and Place</u> <u>Challenge</u>	Same as above	Engineering Math Science
Designing Lifts	In this Lesson you will learn about lifts, and how you can design a lift to help your robot accomplish a task, like raising a Buckyball to a higher location. You will also learn about motor groups, and how you can code motor groups to function as one device, so you can control lifts or other manipulators more easily. Then, you will apply your learning to lift and score game objects on a low, medium, and high platform in the Lift and Score Challenge.	<u>Lift Design Lesson</u> <u>Lift and Score</u> <u>Challenge</u>	Same as above	Engineering Math Science
Developing a Strategy	In this Lesson, you will learn about developing a game strategy, and the steps you can take to organize your team around strategy development, to help you as you work towards the Platform Placer competition. You will practice the process of developing a strategy with your team, and then together with another team to compete	Developing a Strategy Lesson Strategize and Score Practice Shared Strategy Challenge	Same as above	Engineering Math Science

Platform Placer Competition	cooperatively in the Shared Strategy Challenge. Now it is time to compete in the Platform Placer competition! In this cooperative driver control competition, you will develop a game strategy to use two robots to place game objects on low, medium and high platforms in order to achieve the highest possible score in two minutes.	Platform Placer Competition Reflection Lesson	Same as above	<mark>Engineering</mark> Math Science
Conclusion	Now that you have completed all of the challenge activities and the Platform Placer competition, it is time to look back on what you have learned in this Unit, share that learning with your class, and see how these skills have connections in various career paths.	<u>Conclusion Lesson</u>	Unit assessment will be done through the results competition, debrief conversation and engineering notebook <u>Debrief</u> <u>Conversation Rubric</u> <u>Engineering</u> <u>Notebook Rubric</u> <u>Other Grading</u> <u>Rubics</u>	Engineering Math Science